
Low-temperature thermodynamics in the context of dissipative diamagnetism

Jishad Kumar, P. A. Sreeram, and Sushanta Dattagupta
Indian Institute of Science Education and Research, HC-Block, Saltlake City, Kolkata 700106, India

�Received 9 January 2009; published 26 February 2009�

We revisit here the effect of quantum dissipation on the much studied problem of Landau diamagnetism and
analyze the results in the light of the third law of thermodynamics. The case of an additional parabolic potential
is separately assessed. We find that dissipation arising from strong coupling of the system to its environment
qualitatively alters the low-temperature thermodynamic attributes such as the entropy and the specific heat.
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I. INTRODUCTION

The third law of thermodynamics, attributed to Nernst �1�
and as stated by Planck �2�, reads: the entropy per particle of
an N-body system s0=S /N goes to a constant value s0 as the
absolute zero of temperature is approached. In quantum
many-body physics the quantity s0 is given by the degen-
eracy g of the ground state, because S�T=0�=kB ln g, with kB
being the Boltzmann constant. Therefore, in the thermody-
namic limit �N→��, s0 is expected to vanish, as long as the
degeneracy g=g�N� does not grow faster than exponential in
N �3�. The third law further implies that thermal quantities
such as the specific heat, the isobaric coefficient of expan-
sion, the isochoric coefficient of tension, etc., all approach
zero as T→0. Similarly, as T→0, the magnetic susceptibil-
ity reduces to a constant �4�.

Although stated as a “law” it is surprising to note that
certain simple model systems do not obey the third law of
thermodynamics �5�. For instance, the limiting entropy for a
collection of noninteracting particles each endowed with spin
I, is given by s0=kB ln�2I+1�. Another example is that of a
classical ideal gas for which s0=cV ln T+kB ln� V

N �+�, where
cV �the specific-heat capacity per particle� and � are con-
stants. Evidently, s0 diverges logarithmically with tempera-
ture as it approaches zero. Clearly, proper accounting of “de-
generacy” in the form of Fermi-Dirac or Bose-Einstein
statistics is needed to rescue the third law of thermodynam-
ics. Turning then to quantum mechanics, an intriguing situa-
tion arises for a freely moving particle without boundary
walls. Here the specific heat remains at its constant �and
classical� value C=

kB

2 down to zero temperature, in clear
violation of the third law. Another interesting paradigm is the
so-called Einstein oscillator which, although not violative of
the third law, yields an exponential suppression of the spe-
cific heat as T→0 �6�. These cases are not just of esoteric
interest because with the present advances in fabrication of
nanosystems, a ballistic electron or an Einstein oscillator is
eminently realizable in the laboratory. Hänggi and Ingold �5�
however demonstrate that in both these case, viz., a quantum
harmonic oscillator and a free quantum particle, the low-
temperature properties undergo qualitative changes if the
system is strongly coupled to an environment that is also
quantum mechanical. Strong coupling ensures finite dissipa-
tion which makes the specific heat for both the quantum
oscillator and the free quantum particle vanish linearly with
temperature as T→0, albeit with slopes having converse de-

pendence on the friction �. For the harmonic oscillator, the
slope is directly proportional to �, while for the free particle,
the slope is inversely proportional to �.

Given this background Hänggi and Ingold �5� arrive at the
interesting thesis that quantum mechanics is only the first
step toward satisfying the third law of thermodynamics—a
more crucial step is to make the system an “open” one in
which it is strongly coupled to a dissipative environment.
This conclusion is not just of academic interest but is topi-
cally relevant for quantum nanosystems �because of their
smallness and large surface to volume ratio� which are nec-
essarily under strong influences of the environment. The
Hänggi-Ingold analysis therefore elevates the newly devel-
oped subject of dissipative quantum mechanics �7� and puts
it within the perspective framework of the third law of ther-
modynamics.

With these motivating remarks we are led to assess the
third law in the context of another paradigm of quantum
dissipation which, like the free particle and the oscillator, is
amenable to an exact analysis. The case in point is that of a
charged quantum particle �e.g., an electron� in the combined
presence of an external magnetic field and a dissipative
quantum bath �8�. Unlike the free quantum particle, the Lor-
entz force coupling of the charge to the magnetic field intro-
duces a new energy scale viz., � times the cyclotron fre-
quency. Indeed the cyclotron motion of the electron lends
itself a certain similarity to the oscillator problem. However
the energy eigenvalues �of the so-called Landau levels� are
now highly degenerate. A further coupling to a quantum
bath, modeled below in terms of an infinite set of harmonic
oscillators, makes the problem a truly many-body one. The
statistical mechanics of a collection of electrons in a box
under the influence of an external magnetic field led to the
celebrated phenomenon of Landau diamagnetism �9� that
epitomizes not just the essential role of quantum mechanics
but that of the boundary of the box as well �10�. While study-
ing the dissipative effects on Landau diamagnetism within a
fully time-dependent quantum Langevin equation formula-
tion, we had noticed that the correct equilibrium expression
of Landau �for zero dissipation� is retrieved only if the
asymptotic time t→� limit is taken first before the boundary
effects are switched off �11�. The boundary effects were
sought to be recoverable under a contrived two-dimensional
parabolic potential, characterized by a harmonic-oscillator
frequency �0, a trick invented by Darwin �12�. Therefore,
when we analyze the third law of thermodynamics, as we do
in this paper, we will separately examine the �0=0 and the
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�0�0 cases. We may remark in passing that a parabolic
potential of the type considered here can be physically real-
ized in a quantum dot or a quantum well nanostructure in
nanoscopic systems and hence the results for �0�0 are of
independent interest �13�.

Before we set up the calculation of various thermody-
namic quantities in the context of dissipative Landau dia-
magnetism, one other remark concerning the method of cal-
culation is in order. The quantum Langevin equation
provides an unconventional approach to statistical physics
that may be referred to as the Einstein approach, in which
equilibrium results are sought to be derived from the long-
time limit of time-dependent quantities �14�. Contrasting this
is the Gibbs canonical approach in which the thermodynami-
cal entities such as the specific heat, the magnetization, etc.
are obtained as derivatives of an ensemble averaged object
called the partition function Z. It is gratifying to point out
that dissipative Landau diamagnetism emerges to be the
same when calculated from either the Einstein or the Gibbs
approach, thus lending credence to the idea of ergodicity
�15�. Intriguing however it is to note á la Van Vleck �10� that
Z is not as sensitively affected by the boundary states as the
magnetization itself when the latter is calculated as the sta-
tistical average of a dynamical variable. Because it is the
latter route that is adopted in the Einstein approach it is
essential that the contribution due to the harmonic well, pa-
rametrized by �0, is retained to the end of the calculation.
For this reason, and for the fact that thermodynamic quanti-
ties are best derived from the partition function, we shall
focus in this paper on the treatment of Z, delineating never-
theless the cases �0=0 and �0�0.

With the preceding introduction this paper is organized as
follows. In Sec. II we review the well-known Landau analy-
sis for the partition function Z for a collection of electrons in
a magnetic field, with the aid of the Boltzmann statistics. The
latter is applicable when the de Broglie wavelength of an
electron is smaller than the average interelectron distance so
that effects of Fermi-Dirac statistics can be ignored. From Z
we derive the entropy S, the specific heat C �always taken to
be at constant volume�, and the magnetization M and assess
the low-temperature behavior. In Sec. III we redo the analy-
sis in the presence of a confining parabolic potential. Section
IV is the core of the paper in which we repeat the calculation
of Secs. II and III but now with dissipation included, again
for �0=0 and �0�0. Although results are derived for gen-
eral dissipation, specific expressions for the low-temperature
behavior are presented for the widely employed Ohmic dis-
sipation that yields a Markovian description of the underly-
ing quantum Brownian motion �16�. The Ohmic model how-
ever has to be regularized at high frequencies with a Drude
cutoff �17�. Finally, our summary conclusions are given in
Sec. V.

II. THERMODYNAMICS OF THE LANDAU PROBLEM

For an isolated electron of mass m and charge e placed in
a magnetic field H along the z axis, the Lagrangian is given
by �18�

L0 =
1

2
m�ẋ2 + ẏ2� −

e

c
�ẋAx + ẏAy� , �1�

where Ax and Ay are the components of the vector potential A�

and the dots denote the time derivatives. In writing Eq. �1�
we have ignored the free motion along the z axis. Defining
then the generalized momenta as p� j =

�L
�r�̇ j

�j=1,2 , . . .�, the

Hamiltonian can be constructed as

H0 = �pxẋ + pyẏ − L0� =
1

2m
��px +

e

c
Ax�2

+ �py +
e

c
Ay�2� .

�2�

We work in the so-called “symmetric gauge,” in which

Ax = −
1

2
yH, Ay =

1

2
xH , �3�

that yields

H0 =
1

2m
��px −

e

2c
yH�2

+ �py +
e

2c
xH�2� . �4�

The Hamiltonian in Eq. �4� can be easily diagonalized, and
the energy eigenvalues can be written as

En = �n +
1

2
���c n = 0,1,2, . . . , �5�

which has the same form as that of a one-dimensional har-
monic oscillator having frequency replaced by the “cyclotron
frequency” �c�=

eH
mc �, with the important difference that each

oscillator level n is degenerate with a degeneracy g given by
�19�

g =
eH

2��c
A , �6�

with A being the area of the box perpendicular to the H-field.
With the preceding preliminaries it is straightforward to

compute the canonical partition function Z which is given by

Z = g	
n=0

�

e−���c�n+1/2� =
m�cA

4��
csch�1

2
���c� , �7�

where ��= 1
kBT � is the inverse temperature and kB is the Bolt-

zmann constant. From Z we can derive various thermody-
namic quantities. For, instance, the Helmholtz free energy is

F = −
1

�
ln Z = −

1

�
ln�m�cA

4��
csch�1

2
���c�� , �8�

and the internal energy U is

U = −
�

��
ln Z =

1

2
��c coth�1

2
���c� . �9�

From Eqs. �8� and �9�, the entropy S can be calculated using
the thermodynamic relation,

S =
1

T
�U − F� . �10�

The magnetization per particle is
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M =
1

�

�

�H
ln Z =

e�

2mc
� 2

���c
− coth�1

2
���c�� , �11�

which is the Landau answer �9�. The heat capacity at con-
stant volume C can be calculated from either

C = − kB�2�U

��
, �12�

or

C = − �
�S

��
. �13�

Both routes yield

C = kB�2�1

2
��c�2

csch2�1

2
���c� . �14�

We now examine the low-temperature behavior of these
quantities in order to asses the third law. We find

lim
T→0

S = kB ln g �15�

consistent with the Boltzmann entropy relation. Further

lim
T→0

M = −
e�

2mc
, �16�

a Bohr magneton, as all the electrons are in the lowest Lan-
dau level, and

lim
T→0

C = kB���c

kBT
�2

exp�−
��c

kBT
� . �17�

Therefore, S �and indeed s0= S
N � and M are consistent with

the third law and the specific heat has the same exponential
suppression as in the case of the Einstein oscillator with
however the cyclotron frequency �c replacing the harmonic-
oscillator frequency.

III. LANDAU PROBLEM IN A PARABOLIC WELL

For reasons mentioned in Sec. I we now consider the
dynamics of an electron in a magnetic field with the addi-
tional constraint of a two-dimensional harmonic oscillator,
i.e., a parabolic well. The Hamiltonian in Eq. �4� can now be
rewritten as

H0 =
1

2m
��px −

eyH

2c
�2

+ �py +
exH

2c
�2� +

1

2
m�0

2�x2 + y2� .

�18�

Instead of proceeding as in Sec. II we calculate Z from a
functional-integral approach �20� that provides a convenient
platform for treating dissipation, the subject of Sec. IV. In the
process we dispense with a certain ticklish issue concerning
the “normalization measure” of the path integrals �7�. The
Euclidean action reads as

Ae�x,y� =
m

2



0

��

d	��ẋ�	�2 + ẏ�	�2� + �0
2�x�	�2 + y�	�2�

− i�c�x�	�ẏ�	� − y�	�ẋ�	��� . �19�

Introducing

x�	� = 	
j

x̃�
 j�exp�− i
 jt� , �20�

where 
 j’s are the so-called Matsubara frequencies, defined
by


 j =
2�j

��
j = 0, � 1, � 2, . . . , �21�

we have

Ae�z+,z−� =
1

2
m�� 	

j=−�

�

��
 j
2 + �0

2 + i�c
 j�z̃+
��
 j�z̃+�
 j�

+ �
 j
2 + �0

2 − i�c
 j�z̃−
��
 j�z̃−�
 j�� , �22�

where

z̃��
 j� =
1

2

�x̃�
 j� � iỹ�
 j�� . �23�

The partition function is expressed as a functional integral,

Z =� D�z+�� D�z−�exp�−
1

�
Ae�z+,z−�� , �24�

where

exp�−
1

�
Ae�z+,z−�� = �

j=−�

�

exp�−
1

2
m���� j

+�2z̃+
��
 j�z̃+�
 j�

+ �� j
−�2z̃−

��
 j�z̃−�
 j��� ,

� j
� = 
�
 j

2 + �0
2 � i�c
 j� . �25�

At this stage we clarify the issue of the functional measure,
alluded to at the beginning of this section. Following Weiss
�6� we separate out the j=0 term and write

� D�z+� . . .

= 

−�

� dz+�0�

2��2�/m

�
j=1

� 

−�

� 

−�

� d Re z̃+�
 j�dImz̃+�
 j�
�/m�
 j

2 . . . .

�26�

From Eq. �24� then

Z = �
j=1

�

Z j
+Z j

−, �27�

where, for instance,
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Z j
+ =

1

2��2�/m



−�

�

dz+�0�exp�−
m��0

2

2
�z+�0��2�


 �
j=1

� 

−�

� 

−�

� d Re z+d Im z+

�/�m�
 j
2�

exp�− m��
 j
2 + �0

2

− i�c
 j��Re z+
2 + Im z+

2�� =
1

���0


 j
2

�
 j
2 + �0

2 − i�c
 j�
.

�28�

Evidently

Z j
− = �Z j

+��. �29�

Therefore

Z = � 1

���0
�2

�
j=1

�

 j

4

�
 j
2 + �0

2�2 + �c
2
 j

2 , �30�

which can be alternatively expressed as

Z =
�+�−

4�0
2 csch�1

2
���+�csch�1

2
���−� , �31�

where

��
2 =

1

2
��c

2 + 2�0
2 � �c


�c
2 + �0

2� . �32�

Note that for �c=0 �no magnetic field� Z reduces to the
partition function for an isotropic two-dimensional harmonic
oscillator �7�, as expected. On the other hand, the limiting
process of �0→0 �no confining potential� in which we ex-
pect to recover the results of Sec. II is not so facile in view of
the singularity present in the prefactor of Eq. �30�. The latter
can be “regularized” by an argument discussed in Kleinert
�20� which states that as �0→0

1

�0
2 →

m�

2�
A , �33�

where A is the size of the system, introduced earlier. Hence
Eq. �31� reduces to Eq. �7�.

Turning to thermodynamics, it is interesting to note that
while the partition function Z is plagued by the singularity
issue, when �0→0, none of the thermodynamic quantities
which are expressed as derivatives of Z, suffers from this
problem. For instance, the internal energy is given by

U =
1

2
���+ coth�1

2
���+� + ��− coth�1

2
���−�� .

�34�

Because �−→0 and �+→�c, as �0→0, we easily recover
Eq. �9� for the pure magnetic field case. For calculating the
magnetization it is convenient to use the product representa-
tion of Z, as in Eq. �30�. We find

M =
1

�

�

�H
ln Z = −

2H

�
� e

mc
�2

	
j=1

�

 j

2

�
 j
2 + �0

2�2 + �c
2
 j

2 .

�35�

Evidently Eq. �35� yields Eq. �11� when �0→0. Finally, the
heat capacity can be derived with the aid of Eqs. �12� and
�34� as

C = kB�2��1

2
��+�2

csch2�1

2
��+�

+ �1

2
��−�2

csch2�1

2
��−�� , �36�

which is again exponentially suppressed as �0→0.

IV. DISSIPATIVE DIAMAGNETISM

We address in this section the central theme of the paper,
viz., what happens to Landau diamagnetism �cf., Eq. �11� or
�35�� in a dissipative environment. For this we would natu-
rally like to embed the Hamiltonian in Eq. �4� or �18� into a
larger system involving infinitely many degrees of freedom,
which may then be called a heat bath. We follow the meth-
odology of Feynman and Vernon �21�, as extended by Cal-
deira and Leggett �16,22� and also by Ford et al. �23�. To the
Hamiltonian in Eq. �4� or �18� we add a term given by

H̃ = 	
j
� p� j

2

2mj
+

1

2
mj� j

2�q� j − r��2� , �37�

where r� is a two-dimensional position vector with compo-
nents x and y. The full many-body Hamiltonian is given by

H = H0 + H̃ . �38�

Clearly the effect of the environment, modeled as a collec-
tion of quantum harmonic oscillators with coordinates q� j and
momenta p� j, is to influence the dynamics of H0 through the
linear coupling term obtained upon expansion of the square
in Eq. �37�. When the number of oscillators is infinitely
large, any energy lost or gained by the system of H0 is not
compensated within the “relaxation time” of the environ-
ment. The effect is then dissipative and the environment may
be regarded as a proper “heat bath.”

The method of calculation of the partition function is ex-
actly similar to that described in Sec. III. In analogy to Eq.
�20� we also expand the bath coordinates in a Fourier series.
Skipping the details, which can be found in Ref. �15�, the full
action is again given by Eq. �22�, with however �0

2 replaced
by ��0

2+
 j�̃�
 j�� where the “memory friction” �̃�
 j� is given
by

�̃�
 j� =
2

m�



0

�

d�
J���

�


 j

�
 j
2 + �2�

. �39�

The quantity J��� is the “spectral density” of bath excitations
defined by
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J��� =
�

2 	
j=1

N

mj� j
3��� − � j� . �40�

Using the same path integral technique as discussed in Sec.
III, we obtain the partition function as

Z =
1

����0�2�
j=1

�

 j

4

�
 j
2 + �0

2 + 
 j�̃�
 j��2 + �c
2
 j

2 . �41�

This infinite product diverges in the strict Ohmic limit. Simi-
lar results have been obtained recently by Hänggi et al. �24�,
for a free Brownian particle. We therefore regularize the
memory friction function by introducing a Drude cutoff so
that

�̃�
 j� =
��D

�
 j + �D�
. �42�

For “Ohmic dissipation” with Drude cutoff, the spectral den-
sity J��� has the particular form

J��� =
M��

1 +
�2

�D
2

. �43�

Note that the pure Ohmic model emerges when the cut-off
frequency �D→�. Substituting Eq. �42� into Eq. �41� and
performing a few manipulations, the partition function in
terms of the gamma functions can be written as

Z = ����0

4�2 �2�k=1

3
���k



����k�



�

����D



��2 , �44�

where ��z� is the gamma function and the so-called Vieta
equations �6� can be written as

�1 + �2 + �3 = �D + i�c,

�1�2 + �2�3 + �3�1 = �0
2 + ��D + i�c�D,

�1�2�3 = �0
2�D,

�1� + �2� + �3� = �D − i�c,

�1��2� + �2��3� + �3��1� = �0
2 + ��D − i�c�D,

�1��2��3� = �0
2�D. �45�

The Helmholtz free energy is then given by

F = −
2

�
ln����0

4�2 � −
1

�
	
k=1

3 �ln ���k



� + ln ���k�



��

+
2

�
ln ���D



� , �46�

whereas the internal energy is

U = −
2

�
−

1

�
	
k=1

3 ��k



���k



� +

�k�



���k�



�� , �47�

with ��z� being the digamma functions which are defined as
��z�= �

�z ln ��z�. The specific heat therefore has the expres-
sion

C = − 2kB + kB	
k=1

3 ���k



�2

����k



� + ��k�



�2

����k�



��

− 2kB��D



�2

����D



� . �48�

The entropy can be calculated from the formula

S = kB�ln Z − �
�

��
ln Z� = kB�2�ln����0

4�2 � − 1�
+ 	

k=1

3 � f�� j



� + f��k�



�� − 2f��D



�� , �49�

where

f�z� = ln ��z� − z��z� . �50�

At low temperatures, the internal energy can be written as

U =
�

3

�

�0
2

�kBT�2

�
+

�

2�
	
k=1

3 ��k ln
�D

�k
+ �k� ln

�D

�k�
� , �51�

where we have used the asymptotic expansion of the di-
gamma function for large arguments z. The free energy can
also be expanded in a similar fashion to yield

F = −
�

3

�

�0
2

�kBT�2

�
+

�

2�
	
k=1

3 ��k ln
�D

�k
+ �k� ln

�D

�k�
� .

�52�

Similarly, the low-temperature expansion of the specific heat
reads as

C =
2�

3

�

�0
2

kB
2T

�
+ O�T3� , �53�

and this linear behavior is clearly in agreement with the third
law of thermodynamics. At low temperatures the entropy
vanishes like

S =
2�

3

�

�0
2

kB
2T

�
+ O�T3� , �54�

again in conformity with the third law of thermodynamics.
With the aid of the Drude cutoff, the magnetization can be
expressed as
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M =
1

�

�

�H
ln Z = −

2H

�
� e

mc
�2

	
j=1

�

 j

2�
 j + �D�2

��
 j
2 + �0

2��
 j + �D� + 
 j��D�2 + �c
2
 j

2�
 j + �D�2 . �55�

It is instructive to note that a similar calculation can be
done in the absence of a harmonic potential. The partition
function is now given by the formula

Z =
Nm

2��2�
�
j=1

�

 j

4

�
 j
2 + 
 j�̃�
 j��2 + �c

2
 j
2 . �56�

This can be written in the gamma function representation as

Z =
Nm�

8�3 ��2 + �c
2�

�k=1

2
���k



����k�



�

����D



�� , �57�

wherein it may be noted that only two roots �i.e., �1 and �2�
are now operative in the absence of the confining potential.
Here the free energy is given by

F = −
1

�
�ln�Nm�

8�3 � + ln��2 + �c
2� + 	

k=1

2 �ln ���k



�

+ ln ���k�



�� − 2 ln ���D



�� . �58�

Also the internal energy can be expressed as

U = −
1

�
−

1

�
	
k=1

2 ��k



���k



� +

�k�



���k�



�� . �59�

The specific heat and the entropy are thus given by

C = − kB + kB	
k=1

2 ���k



�2

����k



� + ��k�



�2

����k�



��

− 2kB��D



�2

����D



� , �60�

S = kB�ln�Nm�

8�3 � − 1 + ln��2 + �c
2� + 	

k=1

2 � f�� j



� + f��k�



��

− 2f��D



�� , �61�

where f�z� is given by Eq. �52�.
At low temperatures, internal energy reduces to

U =
�

3

�

��2 + �c
2�

�1 −
�

�D
�

�
. �kBT�2

+
�

2�
	
k=1

2 ��k ln��D

�k
� + �k� ln��D

�k�
�� . �62�

Similarly, the free energy can be calculated as

F = −
1

�
ln�Nm
�2 + �c

2

�
� −

�

3

�

��2 + �c
2�

�1 −
�

�D
�

�

1

�2

+
�

2�
	
k=1

2 ��k ln��D

�k
� + �k� ln��D

�k�
�� . �63�

Using the asymptotic expansions as done earlier, the low-
temperature expressions for specific heat and entropy are ob-
tained as

C =
2�

3

�

�

�1 −
�

�D
�

��2 + �c
2�

kB
2T + O�T3� . �64�

S =
2�

3

�

�

�1 −
�

�D
�

��2 + �c
2�

kB
2T + kB ln�Nm
�2 + �c

2

�
� + O�T3� .

�65�

From Eqs. �64� and �65� we find that the temperature depen-
dence of the specific heat and the entropy is now qualita-
tively distinct because of quantum dissipation. Indeed the
coupling with a harmonic bath changes the single-particle
Landau problem �with discrete energy spectrum� to a many-
body problem with continuous density of states and yields
results in conformity with the Born–von Karman scenario of
power-law temperature dependence of the specific heat �25�.
In the expression for entropy, the degeneracy factor plays an
important role, as is evident in the limit �→0, wherein the
entropy smoothly yields the Boltzmann expression with the
degeneracy of the ground state given by Eq. �6�.

V. CONCLUDING REMARKS

We have reexamined in this paper the low-temperature
thermodynamic properties in the backdrop of the Landau
diamagnetism of a collection of charged quantum particles in
the presence of an external magnetic field. Because diamag-
netism is very much a boundary-sensitive phenomenon, our
calculations have been set up by including a confining para-
bolic well that makes the analysis simpler. From this point of
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view, Landau diamagnetism indeed acquires topical rel-
evance in the context of nanoscopic devices.

Our main conclusion is: the thermodynamics of the Lan-
dau problem, both in the absence and the presence of a con-
fining parabolic well, are quite different in the absence and
presence of a dissipative quantum bath. The flip side of this
result is that a nanosystem, in view of its large surface ef-
fects, is inevitably in strong coupling with its environment.
Such a strong coupling, especially when the environment is
treated quantum mechanically as well, as it indeed must be at
very low temperatures, is known to lead to quantum dissipa-
tion. It is not surprising then that quantum dissipation helps

provide a more realistic and physically sound low-
temperature behavior in that the specific heat vanishes lin-
early with temperature thereby fueling the speculation on
whether or not quantum dissipation is an integral aspect of
nanosystems at low temperatures.
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